Solutions - Midterm Exam

(February 15th @ 5:30 pm)

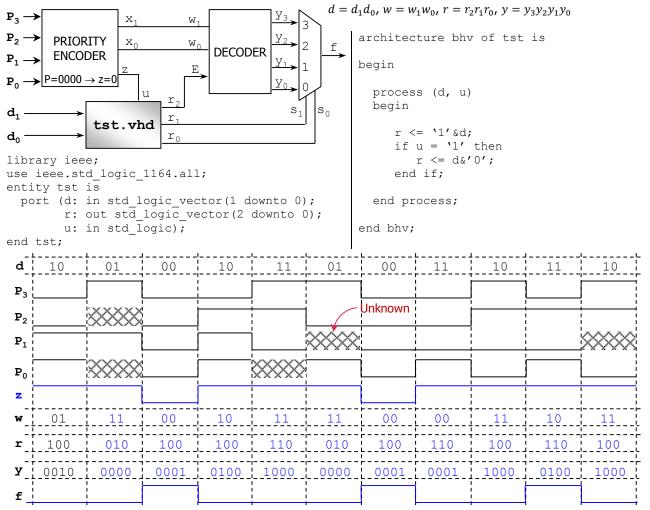
Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (22 PTS)

a) Complete the following table. The decimal numbers are unsigned: (3 pts.)

Decimal	BCD	Binary	Reflective Gray Code
50	01010000	110010	101011
128	000100101000	10000000	11000000

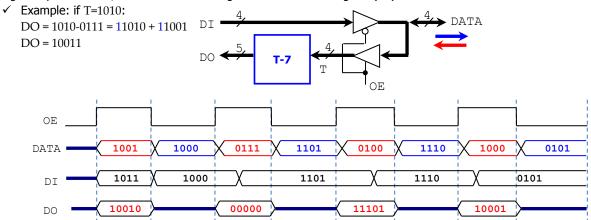
b) Complete the following table. The decimal numbers are signed. Use the fewest number of bits in each case: (15 pts.)


REPRESENTATION					
Decimal	Sign-and-magnitude	1's complement	2's complement		
-17	110001	101110	101111		
-16	110000	101111	10000		
-32	1100000	1011111	100000		
-1	11	10	1111		
41	0101001	0101001	0101001		
-37	1 100101	1011010	1011011		

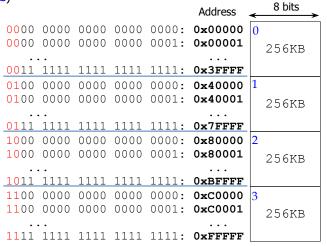
c) Convert the following decimal numbers to their 2's complement representations. (4 pts)

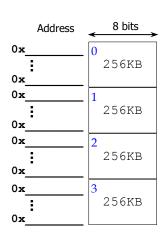
```
-17.25 \checkmark 16.75 +17.25 = 010001.01 <math>\Rightarrow -17.25 = 101110.11 +16.75 = 010000.11
```

PROBLEM 2 (14 PTS)


Complete the timing diagram of the following circuit. The VHDL code (tst.vhd) corresponds to the shaded circuit.

1


PROBLEM 3 (11 PTS)


• Complete the timing diagram (signals *DO* and *DATA*) of the following circuit. The circuit in the blue box computes the signed operation T-7, with the result having 5 bits. T is a 4-bit signed (2C) number.

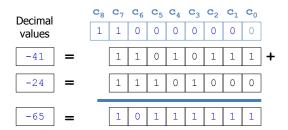
PROBLEM 4 (10 PTS)

- A microprocessor has a memory space of 1 MB. Each memory address occupies one byte. $1KB = 2^{10}$ bytes, $1MB = 2^{20}$ bytes, $1GB = 2^{30}$ bytes.
 - a) What is the address bus size (number of bits of the address) of the microprocessor? Size of memory space: $1 \text{ MB} = 2^{20}$ bytes. Thus, we require 20 bits to address the memory space.
 - b) What is the range (lowest to highest, in hexadecimal) of the memory space for this microprocessor? (1 pt.)
 With 20 bits, the address range is 0x00000 to 0xFFFFFF.
 - c) The figure to the right shows four memory chips that are placed in the given positions:
 ✓ Complete the address ranges (lowest to highest, in hexadecimal) for each of the memory chips. (8 pts)

PROBLEM 5 (15 PTS)

√ 37 + 41

a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits n to represent both operators. Indicate every carry (or borrow) from c_0 to c_n (or b_0 to b_n). For the addition, determine whether there is an overflow. For the subtraction, determine whether we need to keep borrowing from a higher bit. (6 pts)


√ 37 - 41

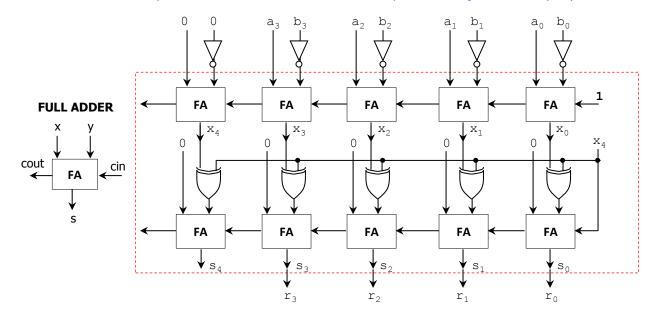

2

b) The figure shows two 8-bit operands represented in 2's complement. Perform the 8-bit addition operation, i.e., complete all the carries and the summation bits. Also, indicate the corresponding decimal numbers for the 8-bit operands and the 8-bit result.

Does this 8-bit operation incur in overflow? Yes Value of the overflow bit: $c_8 \oplus c_7 = 0$ Value of carry out bit: $c_8 = 1$

c) Perform binary multiplication of the following numbers that are represented in 2's complement arithmetic. (3 pts) $\sqrt{-7} \times 9$

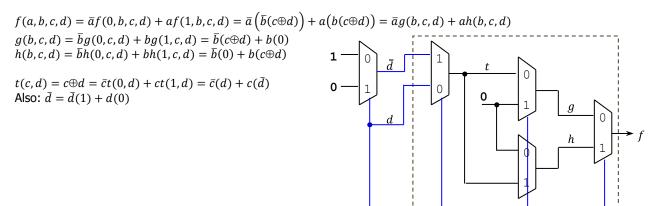
PROBLEM 6 (10 PTS)


■ Sketch the circuit that computes |A - B|, where A, B are 4-bit <u>unsigned</u> numbers. For example, $A = 0101, B = 1101 \rightarrow |A - B| = |5 - 13| = 8$. You can only use full adders (or multi-bit adders) and logic gates. Your circuit must avoid overflow: design your circuit so that the result and intermediate operations have the proper number of bits.

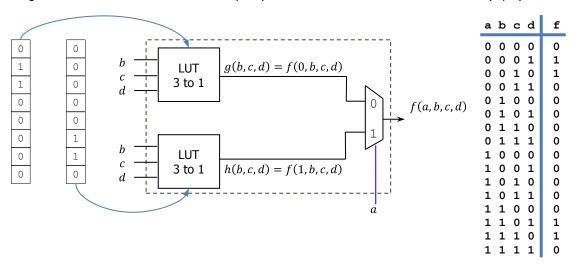
 $A = a_3 a_2 a_1 a_0$, $B = b_3 b_2 b_1 b_0$

 $A, B \in [0,15] \rightarrow A, B$ require 4 bits in unsigned representation. However, to get the proper result of A - B, we need to use the 2C representation, where A, B require 5 bits in 2C.

- \checkmark $X = A B \in [-15,15]$ requires 5 bits in 2C. Thus, we need to zero-extend A and B to convert them to 2C representation.
- \checkmark $|X| = |A B| \in [0.15]$ requires 5 bits in 2C. Thus, the second operation $0 \pm X$ only requires 5 bits.


 - $\text{If } x_4 = 0 \ \to \ X \ge 0 \ \to \text{we do } 0 + X.$
- \checkmark $R = |A B| \in [0.15]$ requires 5 bits in 2C. Note that the MSB is always 0. The unsigned result only requires 4 bits.

a


PROBLEM 7 (18 PTS)

- Sketch the circuit that implements the following Boolean function: $f(a,b,c,d)=(\bar{a}\oplus b)(c\oplus d)$
 - ✓ Using ONLY 2-to-1 MUXs (AND, OR, NOT, XOR gates are not allowed). (12 pts)

d

✓ Using two 3-to-1 LUTs and a 2-to-1 MUX. Specify the contents of each of the 3-to-1 LUTs. (6 pts)

4